HYDRODYNAMICS AND HEAT TRANSFER IN A LAYER
OF LIQUID ON A ROTATING SURFACE, ALLOWING
FOR INTERACTION WITH A GAS FLOW

N. S. Mochalova, L. P. Kholpanov, UDC 532.526.75
and V. Ya. Shkadov

The hydrodynamics and heat transfer of a layer of liquid on a rotating surface are analyzedtheo-
retically on the boundary-layer approximation under conditions in which a gas flow interacts
with the liquid film, :

.The hydrodynamics and mass transfer of a layer of liquid on a rotating surface were studied in the ab-
sence of wave formation and frictional forces at the interface in our earlier paper [1]. In this paper the same
problem will be solved with due allowance for frictional forces at the interface, and the heat transfer from the
liquid film. to the rotating surface will be calculated under these conditions.

1. Let the x axis signify the arc length along the flooded wall of a spiral channel and y, the distance from
the wall along the normal. We assume that the liquid is incompressible, the motion steady, and the flows iso-
thermal. The thin layer of liquid moves without wave formation along an Archimedes spiral, which in polar
coordinates r, § obeys the equation r = Ag, A > 0. We also assume that the pressure gradient in the layer arises
solely from the rotation. Under these assumptions the motion of the thin layer of liquid may be described by
the same Prandtl equations as in [1]:
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R(x) is the radius of curvature in polar coordinates: .
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and X, Y are the projections of the mass forces on the x and y axes respectively. The mass forces acting on_
the particles of liquid include the centrifugal force Fg = w!R(x) and the Coriolis force of inertia Foop = 2w X V.
A change in the direction of rotation of the spiral is only reflected in the second of these. The projections of
the mass forces on the x and y axes take the form

X == o®R (x)cos & + 2 wv, )
¥ = @R (x)sin o &= 20,

where the upper sign corresponds to the anticlockwise, and the lower sign to the clockwise, rotation of the
spiral; @ is the angle made by the centrifugal force vector with the positive direction of the tangent, since
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Fig.1l. Dimensionless thickness of the liquid film as a function of the length of the spiral for
Re =300; I'l =1:a)for E5 =1,1) E1 =0.4:2)1;3) 1.6;:4) 2.5; b) for E1 =1, 5) E5 =0.5; 6) 1
7) 1.5.

Fig. 2. Dimensionlesgs thickness of the liquid film as a function of the length of the spiral for
El1 =1;E5 =1:a) for I'l =1, 1) Re =100; 2) 300: 3) 500; 4) 1000: b) for Re =300, 5) I'l = 2; 6) 1;
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Fig, 3. Dimensionless thickness ofthe thermal
boundary layer as a function of the length of
the spiral for E1 =1; E5 =1; Pr=10: a) for
I't'=0, 1) Re =1000; 2) 500; 3) 300; 4) 100; b)
for Re =300, 5) I't =0;6)1;7) 2
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In the variables g, y the system of Egs. (1) may be expressed as follows:
u au 1 au — _— L . 1 . 2 _i_.'y @_
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It follows from the condition of attachment to the wall that
foo Yy=0, u=v=0. {4)
The effect of the gas flow on the flow of the thin liquid layer is taken into account by way of the tangential
forces on the interface, i.e.,
for Yy =25, fii:_io, = B, p = p,=const, u =U. (5)
dy w

We solve system (3) by the method of integral relationships. The polynomial of the second degree which satis-
fies boundary conditions (4) and (5) takes the form

v (=g -0-7)3)
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-Fig. 4. Relationship between jp and the
length of the spiral for Re = 300; Pr =
10:a)forI't =0,E5=1,1) E1 =0.4; 2)
1; 3)1.6; 4) 2.5; b) forI'1 =1, E1-1, 5)
E5=0.5;6)1; 7) 1.5.
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where U is determined from the equation for the rate of flow g udy = q = const and is expressed by
[}

_3. 49 B
U=g st )

Eliminating the pressure from the second equation of system (3) we find 9p/96. After integrating the first equa-
tion of system (3) with respect to y over the boundary layer and taking account of the 8p/66 just found, we then
obtain a nonlinear equation of the first order in §(§). In dimensionless coordinates this takes the form
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where the upper signh corresponds to anticlockwise and, the lower to clockwise, rotation. We note that for B =
0, i.e., in the absence of interaction between the gas flow and the layer of liquid, Eq. (8) takes the form derived
in our earlier paper [1]. Equation (8) may be solved numerically by the Runge —Kutta method.

The characteristic form of the relationship between the thickness of the liquid film on the spiral and the
length of the latter for various values of the hydrodynamic parameters is shown in Fig. 1a, b and Fig. 2a, b.

We see from these figures that for all operating conditions of the spiral apparatus considered the thick-
ness of the liquid film passes through a maximum as the parameters are varied and then falls, with a tendency
to approach a constant value. The rate at which the film thickness approaches a constant value depends on
Re, Ga, B, E5. The greater Ga and the smaller Re and E5, the more rapidly does the equation of the appara-
tus approach the situation involving a constant film thickness.

The distance X such that, after traversing it in a downstream ‘direction, the film thickness and surface
velocity differ by 0.1% from a constant value (i.e., the length of the "inlet" section), may be found from the
numerical solution of Eq. (8) and takes the form
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The frictional force 7 of the liquid film on the surface of the whole length of the spiral channel has the
form

(_6&) dy = 1,440y 3 g1 33 A3 (exp (— - 012610 ) L {10)
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2. If the heat-transfer resistance is concentrated in the liquid phase, the heat-transfer coefficient from
the liguid film to the wall of the spiral heat-exchanger may be calculated from the energy equation for the lig-
uid layer:

or oT 0T
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in which the velocities u and v are regarded as determined from the solution of the hydrodynamic problem (6).

We assume that the flow of the liquid film is laminar, the thermal diffusivity is constant, and the dissipa~-
tion energy is small enough to be neglected. In solving problem (11) the boundary conditions take the form

for y=0 T_——Tw, for y=0r T=T; . 12

We introduce the dimensionless temperature T = (T—Ty) X (Tf—TW)"l. A polynomial of the third degree satis~
fying the boundary conditions (12) is as follows:
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T = _3(53_)__1(1> i
216 ) 2 \&r

Integrating with respect to y from y = 0 to y = 6, i.e., over the thickness of the thermal layer, and allowing
for the boundary conditions (12), we obtain a nonlinear equation of the first order in 67(8). In dimensionless
coordinates this takes the form
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in which ¢ and d5/ds are to be taken from the solution to the hydrodynamic problem (8). The solution to Eq. (13)
is conveniently obtained for two cases: a) in the inlet section; b) as dé/ds — 0, neglecting the terms in Eq. (13)
containing the dimensions of the thermal layer to the third power, i.e., in the stabilization region.

Equation (13) may be solved numerically by the Runge - Kutta method at the same time as Eq. (8). The
characteristic form of the relationship between the thickness of the thermal layer on the spiral and the length
of the spiral for various values of the hydrodynamic parameters is shown in Fig. 3a and b.

_ We see from Fig. 3 that, for the operating conditions of the apparatus under consideration, the thickness
6 first rises to a maximum by virtue of the fact that the thickness of the liguid film has a transient form in
the inlet section; it then falls, and subsequently starts rising again.

The resultant numerical values of the thickness of the thermal layer are used to dete rmine the average
coefficient of heat transfer to the film of liquid in the inlet section. To this end we consider a certain charac-
teristic length L and average the thermal flux on the surface of the spiral

XR .\'k
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In Eq. (14) the averaging is carried out over the region of development of the liquid film defined by Eq. (9).
An approximating formula for the heat-transfer coefficient found by numerical integration takes the form
Br = 1.5Re!/2E51/2v1/2q1/ %% i (15)
where o
jr =exp{2.3) %, exp(—0.511E1— 1.236)
4 [(— 0.045I'l — 0.45) In Re -+ 0.92} £5 — 0.22In Pr
+ 0.414E1 — 0.69}.
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The accuracy of the resultant approximating equations assessed by comparison with the numerical solution in
the range of parameters studied amounts to about 10%.

The characteristic form of the relationship between j in the liquid film and the length of the spiral for
various values of the hydrodynamic parameters is shown in Fig. 4a, b.

We see from these figures that, for the operating conditions of the apparatus assumed, jT is the greater,
the greater Ga and the smaller Re, Pr, and E5 for the same length of the spiral.

In the stabilization region 6 and g take the form
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NOTATION
u, v are the projections of the velocity vector V on the x and y axes;
p is the pressure in the liquid film;
hy is the initial thickness of the liquid film;
q = Vghy is the rate of liquid flow;
[§) is the characteristic velocity;
8= 6/hy, ET = 6/hy are the dimensionless thicknesses of the hydrodynamic and thermal boundary layers;
B = Ty/u=0u/dy is the frictional force at the surface of the liquid film; _
B = Bhy/V, is the dimensionless frictional force at the surface of the liquid film (B = I'l Ga/Re,
where I'l = 37,/pufAhg);
w is the angular velocity of rotation of the spiral;
A is the characteristic of the Archimedes spiral (r = A6);
x = A[@/2W & +1 +
Y, In (9 + Vg% + 1)] is the current length of the spiral;
L ! is the characteristic length of the spiral;
E5 = hy/A is the dimensionless characteristic of the spiral;
Re = 3Vghy/v is the modified Reynolds number;
Ga = w?Ah}/1? is the Galileo's number;
El = o6/h, =VYRe/Ga is the ratio of the thickness of the boundary layer to the initial thickness of the liquid
film;
a is the thermal diffusivity;
Pr =v/a is the thermal Prandtl number;
x = x/h is the dimensionless current length of the spiral.
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